

Electric Heat Fusion Tape for Insulation Pipelines

Product Overview

The electric heat fusion tape for insulation pipelines is a type of connecting fitting made by embedding a special electric heating wire mesh into PE sheets through thermal bonding. When it is electrically connected, a molten substance flow is formed

between the electric heat fusion tape and the pipe material, allowing for interpenetration and diffusion between the molecules. After cooling, a strong bond is formed, resulting in excellent sealing performance, secure connection, and high tensile strength. It can withstand significant shear forces, exhibits strong environmental adaptability, and can be used as a traction fitting. It is primarily used for the interface connection of thermal and petroleum pipelines.

◆ Product Features

High connection strength and high tensile strength.

Integrates with the original fittings, providing excellent sealing performance and airtightness. The polyurethane does not leak.

Corrosion-resistant.

Convenient and fast installation.

◆ Product Applications

Suitable for repairing joints of buried insulation pipes.

Suitable for central control winding pipes, steel strip reinforced pipes, and spiral corrugated pipes.

Suitable for repairing joints of buried petroleum insulation pipes.

◆ Performance Indicators

Property	Condition	Performance	Standard
Density	23℃	≥0.94 g/cm³	ISO 1183
Carbon Black Content	23℃	>2%	ISO 6964
Hardness (Shore D)	23℃	≥55	ISO 868
Melt Flow Rate	190°C, 5 kg/10min	≤5%, from insulation outer layer	ISO 1133-1
Oxidation Induction Time	210℃	≥30 min	ISO 11357-6

◆ Specifications and Dimensions

Steel pipe Dia (mm)	Jacketpipe Dia (mm)	Sleeve Width (mm)	Sleeve Thickness (mm)
DN159	DN250	500	4
DN219	DN315	500	5
DN273	DN400	500	6
DN377	DN500	600	6

Electric Heat Fusion Tape

DN426	DN560	600	7
DN478	DN600	600	7
DN529	DN655	600	8
DN630	DN760	600	9
DN720	DN850	600	9
DN800	DN955	600	10
DN920	DN1055	650	12
DN1020	DN1155	650	14
DN1220	DN1380	650	16

◆ Installation Steps

- 1. Clean the joint area from dirt and debris. Place the electric heat fusion tape in the middle of the interface, ensuring that the electric heating wire is placed on the outer layer.
- 2. Overlap the electric heat fusion tape and place a pressure plate at the longitudinal joint of the tape to ensure a tight contact at the overlap. Securely tighten and fasten the ends of the electric heat fusion tape with a bundling strap to prevent any looseness.
- 3. Connect the electric heating wire to the control box. Turn on the switch and set the voltage and power-on time according to the specifications reference table.
- 4. Cut off the power supply or allow automatic power-off if there is any melted polyethylene overflowing from the edge of the joint.
- 5. Depending on the site conditions, allow natural cooling for 20-30 minutes before removing the bundling strap and pressure plate.